DIESEL ENGINE

KDG series for generator

Model: 6KDG-315
 Prime power
 Standby Power

286.0KW(389.0HP)/1500 rpm

Not available at 1800rpm
315.0KW(428.0HP)/1500 rpm

Not available at 1800 rpm

- The engine performance is as per ISO 3046. Type of operation is based on ISO 8528.
- Prime power is available for an unlimited number of hours per year in a variable load application.
- The permissible average power output over 24 hours of operation shall not exceed 80% of the prime power rating.

Engine Specifications

In-Line, 4 stroke, water-cooled, Turbocharged
Combustion type
Cylinders - Bore \times stroke
Displacement
Firing order
Compression ratio
Dry weight
Dimension (LxWxH)
Rotation
Flywheel / Housing

Cooling System
Cooling method
Water pump
Water Capacity

Max. water Temp
Cooling Fan

Intake \& Exhaust System
Max air restriction
Exhaust back

Electric System
Charging generator
Starting motor
Battery

Direct injection
6-126×130 mm
9726 cc
1-5-3-6-2-4
16:1
Approx. 990 kg
$1775 \times 865 \times 1220 \mathrm{~mm}$
Anti-clockwise
SAE \# 14 / \# 1
water forced type
Centrifugal, Belt driven
28.0 liters (engine only)

95 degree C.
Blade 7EA - $\varnothing 760$ mm

Fuel System

Injection pump
Governor
Feed pump
Injection nozzle
Opening pressure
Fuel filter
Fuel Consumption
Prime power at 1500 rpm
Standby power at 1500rpm
Not available at 1800rpm
Not available at 1800rpm

Lubrication System
Lub. Oil Pan Capacity
Max. allowable Oil Temp

Oil pressure

Engineering Data
Combustion Air at 1500rpm
Exhaust Gas at 1500rpm
Not available at 1800rpm
Not available at 1800rpm

Conversion Table
PS = kW $\times 1.3596$
psi $=\mathrm{kg} / \mathrm{cm} 2 \times 14.2233$
$\mathrm{HP}=\mathrm{PS} \times 0.98635$

Direct Injection type
Electronic type
Mechanical type
Multi-hole type/ 0.255 mm
$25+0.5 \mathrm{MPa}$
Single Stage, Paper
72.3 liters/h
79.5 liters/h
-
-
28.0 liters

120 degree C.

Min. 294 kPa
Max. 490 kPa
$22.0 \mathrm{m3} / \mathrm{min}$
$38.0 \mathrm{~m} 3 / \mathrm{min}$
-
-
in. $=\mathrm{mm} \times 0.0394$

